Из школьного курса элементарной физики вы знаете о сильном тепловом воздействии сфокусированного света. Познавательный трюк с увеличительным стеклом ясно показывает возможности преломленного потока солнечного луча.
Принципом действия работы лазера может служить его перевод с английского: усиление света вынужденным излучением. По-простому — это световое излучение, вызванное атакой фотонов на рабочую среду с усилением за счет ответной реакции. Световой поток через систему оптических призм и зеркал фокусируется в узконаправленный луч импульсной или непрерывной модуляции. Мощность и интенсивность лазера зависит от используемого активатора и сложности резонирующих систем.
В качестве первичного активного вещества используют все возможные агрегатные состояния: твердое, газообразное, жидкое и плазменное. Важнейшим критерием является способность к возбуждению и отдаче свободных квантов-фотонов. Накачка первичных световых атомов производится разными способами. Это может быть сфокусированное солнечное излучение, специальные лампы, другие лазеры, электрическое воздействие или химические процессы. Для увеличения силы потока делают многоуровневые атакующие каскады. В основе резонаторов применяют плоскопараллельные и сферические зеркала или их комбинации. Главный параметр хорошего прибора — устойчивое сохранение светового луча и его точная фокусировка.
Первый лазер был сделан на рубине в 1960 году, он работал в инфракрасном диапазоне и являлся началом эры световых помощников человека. История развития прикладной квантовой науки шла по пути усиления первоначальных систем накачки и совершенствования оптических резонаторов для достижения мощного и управляемого луча. Выискивались новые рабочие среды, были испробованы и получили путевку в жизнь лазерные установки на красителях, на свободных электронах, химические модели и полупроводниковые исполнения.
Лазер называют самым красочным и одним из важнейших изобретений XX века. Многие годы никто не понимал его практического применения, прибор называли устройством, которое само ищет задачи для решения. Теперь лазерные аппараты лечат людей, исследуют звезды и применятся для развлекательных мероприятий.
Машиностроительные производства давно начали использовать резку металла лазером. Пионерами выступили судостроительные верфи, авиационные заводы и автомобильные гиганты, искавшие передовые методы работы для увеличения производительности труда. Возрастающая конкуренция стимулировала появление инновационных обрабатывающих центров с принципиально новыми системами влияния на рабочий процесс.
К настоящему времени на промышленных предприятиях лазерная резка металла представлена следующими видами установок:
Следующее видео представляет волоконный лазерный станок.
Для работы с цветными металлами и антикоррозионными сталями, имеющими высокую отражающую способность, прикладными исследовательскими институтами разработаны специальные модели традиционных лазеров с резонатором из оптико-волоконной трубки. Световой луч в таких установках более сфокусированный и концентрированный и не рассеивается о зеркальную поверхность алюминиевых, титановых или нержавеющих заготовок.
Широко распространенные газовые СО₂-лазеры работают на рабочей смеси углекислого газа, азота и гелия, зеркала резонатора покрыты серебряным или золотым напылением для увеличения отражающей способности.
Технология лазерной резки металлов постоянно совершенствуется: пробуются новые типы установок, усложняются системы управления процессом, применяются компьютерные комплексы для контроля режимов обработки. Основной упор делается на увеличение точности, чистоты реза и производительности.
В результате воздействия светового луча материал заготовки проходит несколько промежуточных изменений для превращения в обработанную деталь:
В действительности, процесс испарения металла наблюдается только у тонких заготовок, при средней и большой толщине реза удаление остатков вещества из рабочей зоны производится с помощью струи вспомогательного газа (азот, кислород, воздушная смесь или инертные газы).
Такие установки, работа которой представлена на видео, называют газолазерными резаками.
Активный кислород, подаваемый в зону резания не только выводит продукты плавления металла и охлаждает поверхность среза, но и способствует поддержанию температуры и ускоряет режимы обработки. При лазерной резке не происходит деформации заготовки, следовательно, отсутствуют затраты материала на припуск линейных размеров и необходимость в дополнительных чистовых операциях.
Сравнительные характеристики лазерной и плазменной резки приведены
Мировая станочная индустрия идет в ногу со временем и предлагает своим потребителям самое разнообразное оборудование для лазерной резки металла. Многокоординатные аппараты призваны заменить шумные и низко производительные механические резаки. Мощность лазера зависит от специфики производства и экономического обоснования выбранного агрегата.
Новое поколение прецизионных обрабатывающих станков с ЧПУ позволяют проводить обработку материалов с точностью до 0,005 мм. Площадь обработки некоторых моделей лазерных установок достигает нескольких квадратных метров. Большим достоинством является минимизация человеческого фактора, заключающаяся в высокой автоматизации производственного процесса.
Геометрия детали задается в программный блок, осуществляющий управление лазером и рабочим столом с заготовкой. Системы настройки фокуса автоматически выбирают оптимальное расстояние для эффективного резания. Специальные теплообменники регулируют температуру лазерной установки, выдавая оператору контрольные данные текущего состояния инструмента.
Лазерный станок оснащается клапанными механизмами для подключения газобаллонного оборудования, чтобы обеспечить подачу вспомогательных газов в рабочую зону. Система дымоулавливания призвана оптимизировать расходы на вытяжную вентиляцию, включая её непосредственно в момент обработки. Область обработки полностью экранируется защитным кожухом для безопасности обслуживающего персонала.
Лазерная резка листового металла на современном оборудовании превращается в легкий процесс задания числовых параметров и получения на выходе готовой детали. Производительность оборудования напрямую зависит от параметров станочного комплекса и квалификации оператора, создающего программный код. Технология лазерной резки металлов гармонично вписывается в концепцию роботизированного производства, призванного полностью освободить человека от тяжелого труда.
Производители предлагают различные типы лазерных станков: универсальные и специализированные. Стоимость первых на порядок больше, но они позволяют производить несколько операций и выпускать детали более сложной формы. Большое количество рыночных предложений дает возможность выбора для заинтересованных потребителей.
Специалисты машиностроительных предприятий понимают перспективы использования данной технологии для получения точных деталей с хорошей шероховатостью. Область применения обширна: от простого раскроя листового металлопроката до получения сложных кузовных деталей автомобилей. Явные плюсы лазерной резки металлов сводятся к нескольким резюмирующим аспектам:
Среди минусов: высокая стоимость оборудования и расходных материалов.
Лазерная резка стали и цветных металлов пользуется большим рыночным спросом. Способность быстро выдавать чистовые детали нестандартной формы привлекает в профильные предприятия заказчиков малых партий разнообразных изделий. Лазерные технологии активно используются в декоративном творчестве при изготовлении дизайнерских украшений и оригинальных сувениров.
Решение о применении лазерной обработки должно приниматься с учетом расчета окупаемости оборудования и величине эксплуатационных расходов. В настоящее время такие установки могут себе позволить, в основном, крупные предприятия с большим производственным циклом. С развитием технологии будут снижаться стоимость станков и количество потребляемой энергии, поэтому в будущем лазерные аппараты вытеснят своих конкурентов из сферы резки любых материалов.
wikimetall.ru
Современные технологии обработки металла уже давно автоматизированные, сокращается доля ручного труда, повышается точность, скорость, сложность. Этого удалось достигнуть благодаря применению лазерных установок. Основа их работы построена на использовании твердотельного, газового или волоконного лазера.
Специальная установка выделяет пучки сфокусированных лазерных лучей, которые соединяются на поверхности обрабатываемого металла и в месте стыковки образуется один мощный поток. Когда луч соприкасается с поверхностью – он ее нагревает до температуры плавления и за счет этого происходит резка.
Особенностью лазерного способа является, то, что нагрев происходит только по линии разреза, вся деталь не раскаляется и не деформируется. Это делает возможным обрабатывать изделия из мягких металлов и сплавов, температура плавления которых невелика.
С помощью лазерного аппарата можно осуществлять резку самых тонких листов металла – от 0,2 мм. Максимальная толщина детали зависит от материала:
Лазерная резка имеет неоспоримые преимущества перед аналогами:
При таком количестве положительных качеств, лазерная резка металла все же имеет некоторые недостатки:
Лазерная резка нержавеющей сталиСтанки для лазерной резки металла различаются габаритами, мощностью, степенью автоматизации. На российском рынке наиболее распространены установки отечественно производства, немецкого и китайского.
Любая модель, независимо от функциональности и производительности включает следующие основные элементы:
Излучатель необходим для генерирования лазерных пучков, имеет следующие составные части:
Активным элементом выступают твердотельные или газовые лазеры, которые функционируют в двух режимах:
Система формирования и транспортировки излучения передает лазерные пучки, собирает их в один большой луч и направляет его в необходимое место. Система состоит из:
Система формирования и транспортировки газа предназначена для подготовки его необходимого состава и количества. Затем транспортирует газ к месту разреза через сопло.
Лазерная резка металла (Laser Cutting)
Действия координатного устройства направлены на перемещение лазерного луча по поверхности заготовки. Оно включает в себя:Система управления выполняет контролирующие функции, следит за четким соблюдением всех параметров, формирует и передает команды, координирует работу всех модулей. В систему входят:
Существуют твердотельные и газовые лазерные станки. Твердотельные имеют более простую конструкцию, но они достигают небольшой мощности – до 6 кВт. Активным элементом такого лазера является стержень, который выполнен из рубина, неодимового стекла или алюмоиттриевого граната. На этот стержень постоянно проецируется световой поток, благодаря которому он накачивается или возбуждается. Свет производят мощные лампы.
Созданные в результате проецирования лазерные лучи фокусируются системой отражателя и усиливаются резонатором. Через призму пучок лучей передается к головке, которая направляет его на обрабатываемый лист металла.
Газовые лазеры в качестве активного элемента имеют гелий или азот, которые закачаны в специальную камеру. Возбуждение осуществляется непрерывными импульсами электротока, которые характеризуются высокой частотностью. Такие установки имеют меньшие размеры, а мощность достигает 20 кВт.
В конструкциях обоих типов используется обдув металла азотом. Это делается с целью охлаждения поверхности, а также для удаления металлической пыли, образуемой в результате резки. Также обдув азотом применяется для предотвращения окисления поверхности металла в результате нагрева.
Кислород для обдува использовать не рекомендуется, поскольку многие металлы, например, нержавеющая сталь, могут потерять способность к сопротивлению коррозии.
Края алюминиевых заготовок при обдуве кислородом становятся неровными, с заусеницами. Но работа с кислородом позволяет достичь более высоких температур, чем с другими газами, в результате увеличится скорость резки.
Есть еще одна лазерная система – волоконная. Излучение осуществляется по мере прохождения луча по оптоволокну. Это уникальный материал, который не подвержен износу, его не нужно заменять, срок его службы определяется термином эксплуатации самого лазера. Характеристики установки:
С помощью лазерной установки можно резать следующие виды металлов:
Алюминий, титан и нержавеющая сталь отличаются высоким светоотражением, за счет чего снижается скорость их резки лазером. Наилучшие результаты можно получить при толщине листа до 6 мм, используя при этом азотный лазер.
Низкоплавкую сталь лучше всего обрабатывать кислородным лазером – он работает с большей мощностью, за счет чего можно резать листы, толщиной до 20 мм.
Волоконные лазеры используются для резки:
Лазерная резка металла применяется для изготовления:
Лазерные станки любого типа могут резать не только металл, но и дерево, пластик, ткань и прочие материалы, что значительно расширяет область их применения.
promtu.ru
Лазерная резка, так же как и плазменная или газовая, является немеханическим способом раскроя металла, основанном на термическом воздействии. Лазерный луч, испускаемый специальным оборудованием, направляется и концентрируется на заготовке, достигая размеров площади контакта всего в несколько микрон. При этом кристаллическая решетка разрезаемого материала разогревается до температуры плавления.
В то же время, площадь луча настолько мала, что вся заготовка во время обработки остается практически холодной, а линия реза отличается минимальной погрешностью в десятые доли миллиметра. В месте резки металл плавится и может одновременно выкипать (испаряться). Расстояние между поверхностью заготовки и рабочим органом оборудования, испускающим лазерный луч, должно быть не более нескольких сантиметров. Лазером можно выполнять точные, аккуратные разрезы металлических заготовок небольшой толщины.
Филигранность обработки настолько велика, что вышедшая из лазерной установки деталь обычно не нуждается в какой-либо завершающей обработке и может сразу использоваться или передаваться на последующий этап технологического процесса. Лазерным лучом можно не только резать металл, но и фрезеровать, делать впадины, углубления заданного размера и многое другое. Только внутреннюю резьбу выполнить невозможно. Аппарат лазерной резки применяют и для гравировки. Процесс не требует использования сложного оборудования, мощность лазера не должна быть большой.
Лазерная резка считается самой качественной и современной среди всех остальных вариантов раскроя металла. Этот новый способ позволяет выполнить разрез по заданным критериям. Лазером можно обрабатывать любые металлы, независимо от их теплопроводности.
Концентрация энергии, которую обеспечивает луч, настолько высока, что металл в месте резки плавится. При этом область термического воздействия настолько мала, что минимальна и деформация изготовленной детали. Благодаря этому лазерную резку возможно использовать в обработке нежестких металлов.
Преимущества резки металлов лазером:
Недостатки:
Оборудование для лазерной резки металла, как правило, состоит из ниже перечисленных основных узлов:
Излучатель генерирует лазерный пучок с требуемыми для резки, оптическими, мощностными и пространственно-временными характеристиками. Он состоит из:
В качестве излучателя в оборудовании для обработки металла используются газовые и твердотельные лазеры, функционирующие в непрерывном и импульсном режимах. Система транспортировки и формирования излучения передает, фокусирует и направляет пучок от излучателя на деталь, подвергаемую резке. Состав системы:
Система формирования газа и его транспортировки подготавливает состав требуемых параметров и подает его через сопло в зону реза. Координатное устройство обеспечивает относительное перемещение детали и лазерного луча в пространстве. Включает в себя привод, двигатели, исполнительные механизмы. САУ предназначена для управления и контроля параметрами лазера, формирования и передачи команд на предусмотренные исполнительные модули систем формирования и транспортировки излучения и газа, а также координатного устройства. САУ состоит из:
Твердотельные лазерные установки для резки металла конструктивно более просты и, в тоже время, менее мощные, чем газовые. Величина этой характеристики для них составляет в среднем 1–6 кВт. Сердце излучателя твердотельного лазера – стержень (активный элемент) из алюмоиттриевого граната, рубина или неодимового стекла. Стержень непрерывно подвергается накачке (возбуждению) световым потоком от специальных мощных ламп. Система отражателей фокусирует лазерное излучение, резонатор его усиливает, луч передается через систему призм к головке, где происходит его окончательное формирование и подача на заготовку. Управление всеми узлами оборудования происходит автоматически по заложенным в память станка программам.
В газовых лазерах активным элементом является углекислый газ, гелий или азот, закаченные в газоразрядную камеру. Возбуждение газа производится непрерывными электрическими импульсами высокой частоты. Такая конструкция позволяет при сравнительно небольших габаритах установки получать мощности 20 кВт и более, что необходимо для резки сверхпрочных сплавов.
Лазерная головка для резки металла, куда передается луч, обеспечивает его оптимальную стабильность при раскрое и резке, а также неизменность необходимого фокусного расстояния (даже при неровной поверхности металла). Заменой линзы головки можно менять толщину обрабатываемого материала (не на всех установках). Головка оснащена концентрическим соплом, через которое под давлением подается газ, выдувающий расплавленный материал из разреза и одновременно защищающий от продуктов обработки линзу. В области резки может быть предусмотрено дымоулавливание.
В случае обдува азотом луч расплавляет, а струя газа удаляет расплавленный металл из разреза. Азот используют, когда нежелательно окисление разрезаемого материала. Например, если подавать кислород при обработке нержавеющей стали, то ее сопротивляемость коррозии существенно понизится (для обработки нержавейки пригоден только чистейший азот). Резка алюминиевых деталей в кислороде сопровождается образованием неровных, с заусенцами срезов. При обработке в азоте материал только плавится, но не испаряется и не горит. Температура резки ниже, чем с кислородом, но и меньше скорость работы. Фокус луча обычно должен находиться у противоположной от источника излучения стороны листа.
При использовании кислорода температура резки выше, чем с другими газами. Как следствие, увеличивается скорость обработки и возможная толщина листа металла, который при некоторых условиях частично испаряется. Все это является следствием того, что кислород, попадая на поверхность раскаленного лазерным лучом металла, вступает с последним в реакцию окисления, которая сопровождается выделением тепла. Скорость резки тем выше, чем чище кислород. Для лазерной резки могут использоваться и другие газы – выбор зависит от вида и толщины металла, предполагаемой последующей обработки.
tutmet.ru
Самой распространенной методикой резки сегодня считается резка лазером. Применив такую резку, можно изготовить из листов изделия различной конфигурации и дизайна, которые еще совсем недавно невозможно было получить. Для чего еще используется лазер в строительстве, читайте в нашей следующей статье.
Работает он на основе сфокусированных лазеров, которые обеспечивают высокую концентрацию луча и способны резать любой материал. На внешней стороне листа происходит формирование окислов, которые повышают температуру до самой точки плавления и значительно повышают поглощение ими энергии. В том месте, где луч контактирует с металлом, создается высокая температура и металл начинает плавиться, при этом за границей этой области он только лишь немного нагревается.
В процессе резки идет подача кислорода, который не только способен выдуть все ненужные продукты горения, но и значительно увеличить скорость резки. При этом в процессе резки кислород струей активно охлаждает металл возле самой линии разреза. Получение точного разреза вплоть до миллиметра возможно, если процессом резки будет управлять запрограммированный компьютер.
Основное достоинство станка лазерной резки металла — идеально ровный срез любой формы и размера без его деформаций, которые часто получаются при механических разрезах. С помощью такой технологии можно быстро разрезать любой металл с минимальным количеством отходов и с максимальной точностью.
Такая резка считается самой востребованной, поскольку она смогла облегчить работу с многими твердосплавами, обработать вручную которые очень сложно. Чаще всего с такой резкой обрабатываются различные цветные металлы, сплавы алюминия и даже стали.
Станок лазерной резки металла применять можно также и при гравировке любых поверхностей различных изделий. Его часто применяют при производстве сверхсложных деталей, которые невозможно вырезать вручную. Вся продукция, которая была изготовлена или обработана на этом станке, высоко рентабельна и экономически целесообразна, быстро при этом окупаясь.
Однако такой станок не каждому по карману и поэтому довольно часто многие делают выбор в пользу резака. Внешне он чем-то напоминает ключ (такого же небольшого размера) и работа с ним не требует особенных навыков и умений.
Сегодня самыми распространенными считаются пропановые резаки, которые работают на пропане и кислороде. Эта смесь при смешивании дает максимальную температуру горения, поэтому работать с металлом становится несложно.
Процедура резки с помощью резака должна производиться с правильной скоростью для получения идеальных срезов. Определить нужную скорость, с которой нужно работать можно самому, глядя на вылетающие искры. Если скорость правильная, то поток искр должен вылетать под углом от 87 до 90 градусов относительно разрезаемой поверхности.
высокоскоростной станок лазерной резки открытого типа резка металла резаком — направление резкиЕсли искры летят прямо противоположно движению резака, то это значит, что скорость маловата и надо ее увеличить. При угле потока менее 85 градусов – скорость надо снизить.
При резке металла резаком обязательно обращайте внимание на толщину листа. Если толщина более 60-ти мм, тогда его стоит во время работы расположить под наклоном не только затем, чтобы выполнить более точно работу, но и чтобы обеспечить сток шлаков.
Работая резаком, нужно быть крайне внимательными и всегда помнить о том, что баллоны с газом должны располагаться не менее чем на 10-ти метровом расстоянии от самого рабочего места. При этом использовать полностью газ из баллонов нельзя, чтобы они не взорвались.
Во время резки металла резаком могут возникнуть и внештатные ситуации, например, когда слетает штуцер или же обрывается кислородный шланг. Не стоит сразу же паниковать в таких случаях и пугаться, нужно быстро перекрыть подачу пропана и закрыть баллоны. Преимущества такого вида резки перед обычной болгаркой очевидны, поскольку с помощью резака можно разрезать толстые листы металла и делать криволинейные срезы. При этом он довольно компактен и его можно даже перевозить с собой.
papamaster.su