Современная электронная техника совершенствуется очень быстро. Степень интеграции современных микросхем такова, что в одном корпусе умещаются миллионы транзисторов, но сами корпуса становятся все меньше и меньше. Дискретные детали – транзисторы, конденсаторы, резисторы тоже малогабаритные, безвыводные. Все это монтируется на платах методом поверхностного SMD монтажа. Детали расположены настолько плотно, что припаять что-то обычным сорокаваттным электрическим паяльником ЭПСН просто невозможно.
Правда, некоторые специалисты от паяльника утверждают, что припаять все что угодно можно даже топором. Может быть это и так, но, как говорится, не всем дано. Поэтому лучше, все-таки, пользоваться паяльником, благо теперь существует очень широкий выбор паяльного инструмента. И к покупке этого инструмента надо подойти творчески, а не брать все, что попадется на глаза.
Прежде всего, необходимо определить, для каких работ покупается электрический паяльник. Если предполагается паять массивные детали, например, автомобильные радиаторы, медные трубки, жестяные конструкции – в общем, все то, что обладает большим теплоотводом, потребуется молотковый паяльник очень большой мощности. Такой паяльник часто называют «топором». Мощность таких паяльников достигает нескольких сотен ватт. Мощный паяльник типа «топор» показан на рисунке 1.
Рисунок 1. Молотковый паяльник мощностью 200Вт
Разумеется, что назначение такого паяльника весьма специфическое, не всегда и не везде он может понадобиться. Для применения в бытовых условиях больше подойдет паяльник мощностью 25…60Вт. Время от времени им можно выполнить практически все паяльные работы по ремонту бытовой техники и даже паять печатные платы с выводными компонентами. Внешний вид такого паяльника показан на рисунке 2.
Рисунок 2. Паяльник ЭПСН
Конструкция такого паяльника неразборная, о чем написано даже в прилагаемой к нему инструкции. Об этом паяльнике можно сказать, что его нагреватель достаточно долговечен, перегорает весьма редко, даже если пользоваться паяльником очень интенсивно. Чаще случается, что медное жало обгорает и приваривается внутри нагревателя настолько прочно, что достать его просто невозможно, в этом случае приходится приобретать новый паяльник.
Чтобы такого не произошло, рекомендуется периодически вынимать жало из паяльника и очищать его от продуктов окисления. При этом из самого паяльника высыпается черный порошок. Все это хорошо, когда читаешь, но в большинстве случаев об этом просто забывают, и еще вполне рабочий паяльник попросту выбрасывают.
Перед тем, как пользоваться новым паяльником кончик жала следует облудить. Для этого паяльник сначала надо разогреть, после чего в горячем виде снять окислы мелким напильником, быстренько макнуть зачищенный конец в канифоль, а затем в припой. В результате на рабочей поверхности жала остается капля припоя. Если этого не сделать, то жало почернеет, и расплавить припой попросту не удастся.
В процессе работы медное жало постепенно растворяется в припое, и на нем образуются раковины и появляются окислы. Работать таким жалом становится невозможно, и его снова приходится подправлять напильником и облуживать. И так до тех пор, пока от жала не останется маленький кусочек. Такое жало следует поменять.
Несколько меньше жало будет выгорать, если перед использованием его отковать молотком до нужной формы: на поверхности медного жала образуется наклеп, более твердый слой металла. Именно этот наклепанный слой более устойчив к выгоранию.
Самодельные конструкции электрических паяльников
Иногда случается, что паяльник, даже мощностью всего 25Вт, оказывается великоват, чтобы припаять маленькую детальку. В этом случае может помочь накрученная на жало медная проволока, как показано на рисунке 3.
Рисунок 3. Уменьшение размеров жала намоткой медной проволоки
Такое импровизированное жало следует сначала облудить, как было написано чуть выше. Конечно, такая конструкция недолговечна, но ее вполне хватает, чтобы сделать несколько паек.
В свое время радиолюбителями было предложено немало конструкций миниатюрных электрических паяльников. Многие из них были даже очень хороши, но, к сожалению, для их изготовления требовались некоторые токарные и слесарные работы. В домашних условиях сделать такой паяльник просто невозможно.
Но наши люди, проявив творческий подход, изобретают миниатюрные паяльники из подручных средств. Две таких конструкции были опубликованы в журнале «Радио» №1 2011. Первая из них показана на рисунке 4. Основой ее послужил выжигатель по дереву, которым многие пользовались в детстве.
Рисунок 4. Паяльник из выжигателя по дереву
Конструкция паяльника понятна из рисунка. Достаточно на спираль выжигателя плотно намотать медную проволоку диаметром миллиметра полтора и, естественно, облудить, ведь как-никак паяльник! Получившееся импровизированное жало очень напоминает конструкцию, показанную на предыдущем рисунке. Автор паяльника О. Иванов из города Владимира.
Неоспоримым достоинством такой конструкции является то, что температура выжигателя регулируется, а значит, есть возможность регулировать и температуру нагрева получившегося паяльника.
Автор другого импровизированного паяльника А. Филиппов из с. Нюксеница Вологодской области. Конструкция паяльника показана на рисунке 5.
Рисунок 5. Импровизированный паяльник А. Филиппова
В качестве паяльного жала используется медный провод диаметром 1,6 мм длиной около 60 мм, на который намотана «спираль» из медного же провода ПЭВ-2 диаметром 0,16 мм. Намотка выполнена виток к витку, отступив от жала на 8..10 мм, длина намотки примерно 35 мм. До первого включения роль межвитковой изоляции выполняет эмаль, которой покрыт провод.
После обгорания спирали роль изоляции выполняет появившийся на проводах окисел, что вполне достаточно при низком напряжении питания. Обратный конец паяльного стержня согнут кольцом и одним винтом прикреплен к эбонитовой ручке. Напряжение питания подводится гибким проводом сечением не менее 0,75мм2.
Питать паяльник следует через регулируемый стабилизатор тока с гальванической развязкой от сети. При напряжении питания около 5В потребляемый ток находится в пределах 2…2,5А, что обеспечивает достаточный нагрев медной «спирали». При таких параметрах мощность паяльника составляет P=U*I=5*2,5=12,5Вт.
Учитывая, что ток перегорания медного провода диаметром 0,16 мм составляет 6А, конструкция получается достаточно долговечной. Автор утверждает, что таким паяльником он пользуется несколько лет, хотя вначале конструкция задумывалась как одноразовая.
Самодельные электрические паяльники становятся достоянием истории, поскольку в настоящее время китайская промышленность освоила очень широкий ассортимент паяльного оборудования. Купить можно любой паяльник для любых целей. Паяльники, прежде всего, различаются конструкцией нагревателя.
Керамические и нихромовые нагреватели
При покупке электрического паяльника следует учесть тип нагревателя.
Нихромовый нагреватель представляет собой спираль, навитую на керамическое основание во внутреннее отверстие которого вставляется паяльный стержень. Некоторые, наиболее совершенные нагреватели имеют встроенную термопару, позволяющую стабилизировать температуру нагрева. Конструкция нихромового нагревателя показана на рисунке 6.
Рисунок 6. Нихромовый нагреватель
Здесь же показан и необгораемый паяльный стержень. Сам он сделан, конечно же, из меди, а снаружи покрыт слоем никеля. Такие стержни ни в коем случае не следует зачищать напильником для того, чтобы облудить, хотя многие пользователи жалуются, что лудятся такие жала плохо, припой на себе не удерживают.
Ничего не остается, как паять только с подачей припоя: в одной руке паяльник, в другой тонкая проволочка припоя, под ними плата. Да и то сказать, что под необлуженным жалом припой плавится плохо. Классическая пайка по методу окунул паяльник в припой, захватил каплю, перенес на плату, невозможна в принципе.
В чем же тут проблема, и как ее решить? Об этом рассказано здесь: Как облудить необгораемое жало у пояльника
Современные паяльники выпускаются, в основном, с керамическими нагревателями. Технология производства таких нагревателей достаточно сложна, и освоена несколькими знаменитыми фирмами. В первую очередь это только что упомянутая фирма Weller, Hakko, Ersa и некоторые другие.
Керамический нагреватель очень долговечен. Если обычный нихромовый нагреватель при пайке в промышленных масштабах (по нескольку тысяч паек за смену ежедневно) приходит в негодность через каких-то полгода, то керамические нагреватели служат годами, конечно, при условии аккуратного пользования.
Основным достоинством керамических нагревателей является высокая скорость нагрева: на рабочий режим паяльник выходит всего за 30 секунд. В принципе не особо важно, как скоро разогреется паяльник при первом включении. Эта скорость важна для работы терморегулятора, ведь чем быстрее греется жало, тем стабильней температура пайки.
На рисунке 7 показан нагреватель паяльника TechTool фирмы Ersa, предназначенный для использования в составе паяльных станций.
Рисунок 7. Керамический нагреватель фирмы Ersa
Нетрудно заметить, что область нагрева керамического нагревателя находится в конце полого жала, поэтому греется в основном та его часть, которая ближе к точке пайки. Совсем близко от точки пайки находится и термопара. Такое расположение термопары обеспечивает быструю реакцию электронного блока даже на незначительные изменения температуры в месте пайки. Вот тут то и сказывается большая скорость нагрева керамического нагревателя.
Замена жала осуществляется с помощью пластиковой рифленой гайки, которая остается холодной даже при разогреве паяльника до 400 градусов. Это позволяет производить замену жала всего за 30 секунд, не дожидаясь остывания паяльника. Вот такая вот высокотехнологичная вещь керамический нагреватель.
Паяльник TechTool удовольствие дорогое. Даже предложение его в интернет - магазинах «по низким ценам» выливается в сумму 7750 рублей (без электронного блока управления). Где низкими ценами не соблазняют, этот паяльник можно купить за 8 257,00руб. Но радиолюбителям пугаться таких цен не стоит, поскольку это цены на паяльники профессионального класса, предназначенные для непрерывной работы по целой смене.
Для любительских целей можно выбрать менее дорогие модели фирмы Ersa, например, паяльник с регулятором температуры PTC 70, внешний вид которого показан на рисунке 8. Даже не в самом дешевом магазине «Чип и Дип» за него просят 3710 рублей, что для хорошего инструмента не так уж и дорого.
Рисунок 8. Паяльник с регулятором температуры PTC 70
Для не очень частого пользования в любительских целях вполне подойдет и паяльник китайского производства: пусть он будет несколько хуже, зато цена радует.
Сменные жала надеваются на керамический нагреватель и удерживаются пружинной защелкой. В ручке паяльника спрятан аналоговый стабилизатор температуры, датчиком которой служит сам нагревательный элемент, поскольку его сопротивление меняется с температурой нагрева.
Кстати, подобные стабилизаторы температуры предлагаются в радиолюбительских конструкциях для обычных паяльников типа ЭПСН. Колесико настройки температуры выведено на ручку паяльника, как показано на рисунке 9.
Рисунок 9. Ручка установки температуры паяльника PTC 70
Напряжение питания паяльника 220В, мощность нагревателя 75Вт. При таких параметрах керамического нагревателя температура жала будет поддерживаться весьма стабильно, паяльник не будет прилипать к плате, ведь чем мощнее нагреватель, тем быстрее нагревается жало.
Таким паяльником можно паять тонкие дорожки печатного монтажа и достаточно крупные детали не опасаясь перегрева или охлаждения паяльника. Для паяльника существует целый набор жал, пригодных для разных паяльных работ.
Некоторые производители прячут тончайшую нихромовую спираль внутри керамического цилиндра и называют такой нагреватель керамическим. Может это такой коммерческий прием, но нагреватель-то все равно нихромовый. В настоящем керамическом нагревателе греется сама керамика.
Паяльники с таким нагревателем часто тоже выполняются с термостабилизатором в ручке, но бывают и без него. Некоторые модели имеют встроенную термопару, пользоваться ими можно только при наличии внешнего электронного блока. Такие комплекты называются паяльными станциями.
Схема достаточно простой паяльной станции опубликована в журнале «Радио» 2008 №5 автор статьи А.ПАТРИН, г.Кирсанов Тамбовской обл. В авторском варианте используется паяльник Sl-30 от паяльной станции Solomon SL-30. Напряжение питания паяльника 24В при мощности нагревателя 48Вт. Но подойдет и любой другой паяльник с похожими параметрами.
Схема достаточно простая и доступная для повторения. Сигнал встроенной в паяльник термопары усиливается и подается на компаратор. Как только напряжение термопары достигает заданного уровня, нагреватель отключается. Для индикации выставленной температуры используется цифровой индикатор, хотя, в принципе, можно обойтись и без него. Прелесть данной конструкции в том, что не надо программировать микроконтроллер, которого в схеме попросту нет.
В статье приводится подробное описание схемы, рекомендации по наладке, приведены чертежи печатных плат. Все это поможет собрать такую паяльную станцию достаточно быстро и легко. Внешний вид авторского варианта самодельной паяльной станции показан на рисунке 10.
Рисунок 10. Внешний вид самодельной паяльной станции
Жало для паяльника
Современные паяльники комплектуются целым набором сменных жал, пригодных на все случаи жизни. Один из таких наборов показан на рисунке 11. Внешний вид паяльника SR971 показан на рисунке 12.
Паяльник при продаже комплектуется всего одним коническим жалом, поэтому остальные жала приходится покупать дополнительно. Мощность керамического нагревательного элемента 25Вт при напряжении питания 220В. Жало паяльника заземлено, что позволяет паять элементы чувствительные к статическому электричеству. Сменное жало устанавливается легко, что позволяет производить различные паяльные работы. Для этого достаточно открутить гайку с накатанной поверхностью, сменить жало и завернуть гайку обратно.
Форма ручки паяльника достаточно эргономична, вес паяльника невелик, работать таким инструментом достаточно комфортно. Единственно, что несколько омрачает все достоинства, это отсутствие встроенного регулятора мощности.
Рисунок 11. Комплект сменных жал для паяльника SR971 с керамическим нагревателем
Рисунок 12. Паяльник фирмы SOLOMON SR971
При работе с SMD компонентами совсем не лишне иметь жала типа «вилка» и миниволна: первое из них предназначено для пайки мелочевки типа резисторов и конденсаторов, а второе позволяет запаивать многовыводные детали в планарных корпусах, не опасаясь, что припой попадет между выводами.
На рисунках 13 и 14 показаны фрагменты таблицы с жалами фирмы Weller, по которым можно выбрать и заказать нужное жало. Кроме того, фирма Weller защищает свои жала лазерной гравировкой, поскольку развелось достаточно фирм, подделывающих оригинальные жала.
Применение таких контрафактных китайских жал нередко приводит в негодность паяльное оборудование, а паяльники фирмы Weller являются весьма дорогими. Даже те, кто занимаются пайкой на профессиональном уровне, не всегда отваживаются купить такое оборудование.
Рисунок 13. Жало типа «вилка»
Очень даже удобно: подводишь такое жало к резистору, греются сразу оба конца, и остается только снять деталь с платы.
Для подобных операций в арсенале паяльного оборудования существует специальный инструмент – термопинцет. Можно сразу нагреть деталь и снять ее с платы. По сути это два паяльника, объединенные в общую конструкцию. Стоит такой инструмент очень даже недешево, но, как показывает практика, можно обойтись и без него.
Рисунок 14. Жало типа «миниволна»
На рабочей поверхности жала имеется небольшое сферическое углубление (показано пунктиром), куда набирается расплавленный припой. Далее жалом проводят по выводам планарной микросхемы, естественно, установленной на плате, и запас припоя перетекает на выводы и дорожки платы.
Очень даже удобно, не надо тыкаться отдельно в каждый вывод микросхемы, все получается как бы само собой. Такая технология повышает производительность ручной пайки не менее, чем в десять раз, а также улучшается и качество.
Казалось бы, что такое жало можно элементарно сделать из обычного медного: всего-то и дел, что просверлить в нужном месте небольшое и не очень глубокое отверстие. Но вот как раз эти маленькие размеры приведут к тому, что такое жало быстро обгорит, от крохотного отверстия не останется и следа. Но если есть необходимость припаять одну – две микросхемы, то такое жало вполне подойдет.
Фирменная «миниволна» (как вариант «микроволна») выполнена с необгорающим хромовым покрытием, а кончик жала залуживается химическим способом. Смачиваемость такого жала великолепна, что является, пожалуй, самым главным условием качественной пайки.
Достаточно подробно технология монтажа – демонтажа микросхем в планарных корпусах описана в статье В. Баринова «Монтаж и демонтаж микросхем в малогабаритных корпусах с планарными выводами». Статья опубликована в журнале «Радио» №1, 2010, стр 25.
Индукционные паяльники
Все рассмотренные выше паяльники используют нагреватели различного типа, тепло от которых передается на паяльное жало, а для стабилизации температуры требуется электронная схема. Совсем по-другому устроены индукционные паяльники, у которых само жало разогревается высокочастотными токами, служит нагревательным элементом. И не надо никакого керамического или нихромового нагревателя. Схематическое устройство индукционного паяльника показано на рисунке 15.
Рисунок 15. Устройство индукционного паяльника
Паяльный стержень изготовлен из меди, а его задняя часть покрыта ферромагнитным сплавом из железа и никеля. На этой части жала расположена катушка индуктивности, питаемая напряжением с частотой 470КГц. Высокочастотные колебания наводят в сердечнике поверхностные токи, которые нагревают железо-никелевое покрытие, обладающее магнитными свойствами и достаточно большим, по сравнению с медью, электрическим сопротивлением. Сочетание этих свойств приводит к разогреву ферромагнитного покрытия.
Тепло от нагретого слоя разогревает весь сердечник, уходит внутрь, охлаждая ферромагнитный слой, ведь внутри сердечника-то медь! Нагрев покрытия происходит до тех пор, пока температура всего сердечника не достигнет точки Кюри. Это температура, при которой ферромагнитное покрытие теряет магнитные свойства. Если сказать проще, то обычный железный гвоздь, при соответствующей температуре, перестанет притягиваться обычным постоянным магнитом.
При потере магнитных свойств перестает действовать поверхностный эффект, а высокочастотные токи уходят внутрь медного сердечника, где не вызывают никакого нагрева. Поскольку медь не реагирует на магнитные поля, поглощение энергии из магнитного поля прекращается, прекращается и разогрев сердечника, поскольку температура жала достигает точки Кюри.
В процессе пайки жало отдает запасенное тепло на расплавление припоя и нагрев паяемых деталей. Температура жала падает ниже точки Кюри, магнитные свойства покрытия восстанавливаются, и начинается нагрев. При этом, чем массивней спаиваемые детали, тем быстрее стремится остынуть сердечник, тем дальше уход от точки Кюри, тем выше воздействие поверхностных токов.
Другими словами мощность нагрева, ее скорость адаптируется к условиям пайки: чем интенсивнее отбирается запасенное жалом тепло, тем интенсивнее происходит нагрев жала. Недаром такая технология нагрева называется Smart Heat, что можно перевести как «умное тепло». Разработка индукционного паяльника, как и самой технологии Smart Heat принадлежит американской компании Metcal.
Прелесть этой технологии еще и в том, что не требуется сложных электронных схем для поддержания температуры, ведь не секрет, что наиболее продвинутые паяльные станции управляются с помощью микроконтроллеров и имеют достаточно сложные схемы. А тут все происходит за счет самого паяльного жала! Достаточно только запитать его высокочастотным напряжением.
И вот тут может возникнуть вопрос: припои могут использоваться разные, температура плавления у каждого своя. Как же поменять температуру нагрева жала для конкретного типа припоя?
Оказывается, все просто. Паяльник комплектуется несколькими жалами-картриджами, каждый на свою температуру, которая зависит от химического состава ферромагнитного покрытия. Достаточно просто взять другой картридж, и с помощью разъема вставить его в ручку паяльника.
В основном используются картриджи серий 500, 600 и 700. Эти цифры указывают температуру нагрева по шкале Фаренгейта. Каждая серия имеет наборы жал различной формы, пригодные для выполнения всех паяльных работ. Но с точкой Кюри паяльники бывают не только индукционные.
Лет пятнадцать назад уже выпускались паяльники с механическим регулятором температуры. Нагреватель у них самый обычный нихромовый, но на заднем конце паяльного стержня имеется небольшая ферромагнитная таблетка, к которой притягивается магнит, управляющий работой микровыключателя. Как только жало разогревается до рабочей температуры, до точки Кюри, внутри паяльника раздается щелчок, и нагреватель отключается. При некотором понижении температуры снова щелкает контакт, жало начинает подогреваться.
Для того, чтобы изменить температуру нагрева в комплект паяльника входит несколько жал с различными температуры точки Кюри.
Другие конструкции паяльников
Рассказ о паяльниках будет несколько неполным, если не упомянуть другие, можно сказать, экзотические типы. Прежде всего, это автономные паяльники, не требующие подключения к электричеству. Одни из них электричество все-таки потребляют от аккумулятора или даже батареек, встроенных в ручку.
Другие паяльники – газовые работают наподобие обычной газовой горелки, только греют паяльное жало. Если жало снять, то получается как раз газовая горелка.
По своим «паяльным» свойствам газовые паяльники едва дотягивают до не самых лучших электрических паяльников. Об этом говорят все, кому доводилось пользоваться этим чудом техники.
Единственное достоинство газовых и любых других автономных паяльников это независимость от электрической проводки: можно что-то припаять даже в чистом поле. Но, слава Богу, такие экзерсисы делать приходится не часто. Поэтому, лучше пользоваться электрическим паяльником.
Борис Аладышкин
Читайте также по этой теме: Как выбрать паяльную станцию
electrik.info
ОГЛАВЛЕНИЕ:
Рубрики: Теоретические статьи
www.modlabs.net
Всех приветствую! Ранее в этой статье мы рассказывали про электрический паяльник, как им пользоваться и основные понятия, также немного ознакомили с видами паяльников, по виду жала. Однако тема паяльников довольно большая и с развитием технологий, в частности электроники, появляются новые спросы производства и требования, поэтому решили продолжить рассмотрение данной темы. Возможно будет несколько тем, посвящённые паяльникам, возможно затронем тему электроники. На начальных понятиях, которые были в предыдущей статье изложены, не будем останавливаться (кто незнаком, то перейдёте по ссылке выше), а сразу приступим с тонкостей, не рассмотренных ранее.
Подробно про электрические паяльники — жала бывают нескольких видов и типов. По виду – его форма, их много, но наиболее встречающиеся: обычное (конусное), скошенная лопатка, капля (скошенный цилиндр или мини-волна), изогнутое, игла. Разновидность по форме объясняется особенностями применения (см. пред. статью). По типу: обычные медные, необгораемые (никелированная медь и др.). Для каждого типа жала требуется определённый уход за ними, например, если для лужения за медным достаточно напильника, то для использования необгораемого, вам придётся о нём забыть :-) Необгораемые жала наиболее удобны и применимы в современных паяльниках. Например, по температуре, медные легко выгорают, а необгораемые вполне могут держаться температур до 300 градусов (в зависимости от материала изготовления жала). Сейчас рассмотрим уход за паяльником с необгораемым жалом.
Для работы с жалом никелированная медь, как сказали, не используется паяльник, ибо в противном случае напильником стерётся никелированный слой, куда будет цепляться припой, а потом вовсе обгорит. Для ухода необходима специальная губка, или влажная специальная ткань (обычно ХБ). Или же можно заменить её губкой для мытья посуды, намоченную либо глицерином или обычной водой. Для очистки прилипшего припоя используют сеточную мочалку из медной или латунной стружки. Эти вещи недорого стоят, впринципе можно это приобрести также в хозяйственных магазинах (губка, мочалка). Сейчас рассмотрим сам процесс ухода:
Вот такой уход требуется за необгораемым жалом. Ограничения температур связано с тем, что свойства необгораемости жала ограничиваются температурами 300 по Цельсию, при выше температурах в течении некоторого времени покроется окислением, но с помощью выше пару изложенных советов, ваш паяльник будет всегда чистым. Сложно? Думаю нет и довольно эффективно.
Продолжим тему, так называемой, необходимой химией для пайки. Флюсы тоже бывают разного типа. Наиболее известные, конечно, канифоль. Но также есть ещё другие виды, в зависимости от облуживаемого материала. Канифоль – это прозрачная стеклообразная смола, светло-желтого цвета, твердая, но хрупкая. Ее получают из смолы деревьев различных хвойных пород. Канифоль по сути, это смесь, состоящая из смоляных кислот, различных типов жирных кислот и небольшого количества окисленных и нейтральных веществ. Бывает еловая или сосновая, применяют для пайки радиодеталей совместно с припоем, канифоль ускоряет пайку и способствует быстрому лужению радиодеталей. Канифоль помогает припою прилипнуть к поверхности и растекается по ней блестящей пленкой. После этого деталь очень легко припаивается. Для пайки канифолью обычно в канифоль обмакивают контакт и жало и затем наносят припой на контакт. После окончания пайки остатки стирают растворителем или спиртом. Жидкие флюсы. Им удобно наносить на место пайки, в отличии от канифоли. Также бывают под определённые виды материалов и эффективно облуживают контакт, удаляя окислы и жировые загрязнения, по времени быстро обходится. Бывают флюсы автивные и пассивные. Активными называются флюсы, в составе которых присутствуют вещества, вступающие в реакцию с металлом. Такие флюсы нужно эффективно после пайки очищать, чтобы не допустить коррозии контактов. Одним из таких является ЛТИ-120. Из пассивных флюсов наиболее применим СКФ, состоящий из ~60% спирта и ~40% канифоли, не вступает в реакцию с металлами контактов. Рассмотрим ещё некоторые флюсы. Ф-64 – флюс для алюминия, оцинкованного железа, меди и др. металлов. Является активным, может быть применим для пайки алюминия и легко удаляется водой. Также для пайки алюминия можно применить «Флюс для пайки алюминия», обычно попадается в таких «бутыльках» Ф61А. Прозрачный, в отличии от предыдущего – высокоактивный, является безотмывочным, можно просто оттереть его обычной тряпкой. Пайка алюминия наиболее затруднена, так как алюминий обладает таким химическим свойством, что оксидная плёнка при пайке образуется быстро. Чтобы эффективно залудить алюминий, есть несколько способов, которые не являются обычными, по сравнению с пайкой на другие виды металлов. Для пайки алюминия также используют совместно с другим флюсом и канифоль с металлическим (медь и некоторые металлы) порошком, как способ предотвратить быстрого появления оксидного слоя. Жидкие флюсы можно наносить либо кисточкой, прямым наведением капли, шприцом или грушей «клизмой».
Паяльная кислота (ZnCl2) – наиболее эффективное вещество и быстрое по времени для облуживания металлов. Однако большой её недостаток в том, что вещество является высокоактивным и проводящий электрический ток, что делает неудобным для пайки радиоэлектроники.
Паяльный жир – основой вещества является вазелин, присутствуют другие вещества. Бывают разновидности активные и пассивные. Применяется для тех же целей, что и канифоль, но по эффективности лучше канифоли.
Бура – высокотемпературный флюс, применяют для пайки металлами, температура плавления которых более 400 °С. Температура плавления её 700-900 °С. Наиболее используют её для пайки чугуна, серебра, латуни и золота. При пайке на поверхности контакта образуются соли, удаление которых можно произвести механическим путём. Также состав буры таков, что она растворима в воде. Бурой также можно спаять металл с неметаллом. Также существуют паяльные пасты, которые состоят из флюса, припоя и добавочных веществ. Бывают безотмывочные и водосмываемые. Последние после пайки приходится очищать водой, так как в составе содержат активные вещества. Паяльной пастой наиболее легко и скоротечно паять SMD компоненты, так как в одной нанесённой капле содержатся все необходимые вещества для пайки.
Гелевый флюс – это та же самая канифоль, но в жидком виде. Удобность его в монтаже и демонтаже SMD компонентов.
Для покрытия контактов изолирующим слоем (особенно для покрытия дорожек печатной платы), используют цапонлак. Представляет собой такую смесь, как растворенная нитроцеллюлоза и искусственные смолы. Бывают прозрачные и цветные. Вторые, чтобы получить определённый цвет, в своём составе имеют органический краситель.По типу нагрева паяльники значительно различаются под различные требования производства электроники. Для работы с современной электроникой «дедовский» паяльник уже непригоден (да и обычные электрические не везде применимы). Есть и газовые паяльники, но данная тема посвящена электрическим. Рассмотрим несколько видов: Обычный электрический паяльник – давно знакомый паяльник. Универсален для работы с электроникой. Но не все виды монтажа им возможны (далее будет более подробно отмечено). Отметим, что есть молоткового вида. Особенность его – довольно габаритное (крупное) жало. Его предназначение – для силовых работ, например, подходит для пайки листового металла, также для автомобильного ремонта. В плане современной электроники такой паяльник не применим. Молотковые паяльники обладают большой мощью (500 Вт) и продолжительно нагреваются. Обычные электрические паяльники бывают с нихромовым и керамическим нагревателем.
Нихромовый паяльник дольше нагревается, также по цене дешёвый, но недостаток его – сложный уход (очистка механическая (паяльником)), также нихром подвержен старению, из-за этого долговечность работы меньше.
Керамический нагреватель имеет значительно больше плюсов: быстрее нагревается (нагрев долго ждать не придётся, как у нихрома), керамика долговечна, возможность доступной установки термодатчика, чтобы контролировать температуру. Недостатком является – дороговизна, по отношению к нихрому (примерно за 600 руб можно купить с керамический нагревателем паяльник), керамика хрупкая (почему постукивания в качестве очистки от припоя недопустимы, важно обезопасить паяльник от падений и ударов). Для тех, кто собирается приобрести паяльник с керамическим нагревателем, то советую искать только с терморегулятором, только таким имеет смысл работать, или же всегда можно купить диммер и последовательно питанию паяльника использовать его, как регулятор. Керамический нагреватель отличается внешне от нихрома тем, что сам нагреватель гладкий и имеет ярко выраженную на кончике ступеньку. Эта особенность связана с технологией производства. Данное отличие важно, так как могут попадаться нихромовые, плотно намотанные и закрытые в керамику.Индукционные паяльники – нагрев осуществляется за счёт энергии подводимого высокочастотного электромагнитного поля (явление токов Фуко). Нагреватель представляет собой катушка-индуктор, жало имеет ферромагнитное покрытие, в котором создаётся катушкой магнитное поле с наведёнными токами, которые нагревают жало.
Такой тип паяльника автоматически регулируемый без дополнительной электроники, так как при достижении определённой температуры (точка Кюри), ферромагнитное покрытие теряет свои магнитные свойства и нагрев сердечника прекращается, возобновляется при охлаждении. Различные виды жал имеют разную точку Кюри, тем самым температуру можно регулировать сменой жала.Импульсные паяльники – паяльники, нагрев которых происходит после нажатия кнопки. Обычно представлен в форме пистолета. В отечественных импульсных паяльниках реализована схема, при которой наконечник в виде медного провода является частью электрической цепи, состоящей из частотного преобразователя и высокочастотного трансформатора. Первый повышает частоту сетевого напряжения до 18-40 КГц, второй снижает сетевое напряжение до рабочего. Жало паяльника крепится к токосъемникам вторичной обмотки трансформатора, что обеспечивает протекание в нем большого тока и быстрый разогрев. Современные импульсные паяльники имеют регуляторы уровня мощности и температуры, позволяющие производить пайку не только мелких электронных элементов, но и относительно крупных деталей.
Паяльные станции. При сборке электроприборов и электронных устройств в промышленности и лабораторных условиях используются паяльные станции, предоставляющие дополнительные возможности и удобства для пайки, в первую очередь, термостатирование жала паяльника с возможностью оперативной установки различных значений температуры. Кроме того, существуют паяльные станции для пайки горячим воздухом или ИК-излучением, демонтажа (оснащенные отсосом припоя), с устройствами автоматической подачи припоя и флюса и т. п.
При использовании термовоздушных паяльных станций нагрев зоны пайки осуществляется струей горячего воздуха, выходящего из сопла паяльника. По своей сути — это фены, в которых выходящий горячий воздух (с температурой 100-500°C) сфокусирован с помощью сопла. По способу создания воздушного давления термовоздушные паяльные станции подразделяются на турбинные и компрессорные. У первых в ручке паяльника находится электродвигатель с крыльчаткой, создающий воздушный поток. В компрессорных станциях давление воздуха создается диафрагменным компрессором, находящимся в корпусе станции.
Инфракрасные паяльные станции осуществляют нагрев инфракрасным излучением с длиной волны 2-10 мкм. Зона нагрева может колебаться от 10-ти до 60-ти мм. Ее прямоугольные размеры задаются системой регулировки окна ИК-излучателя. Произвольную форму можно получить, используя отражающую ленту из фольги, которая закрывает те области электронной платы, которые не подлежат нагреву. Инфракрасной паяльной станцией более удобно выполнять монтаж и демонтаж BGA.
Также есть паяльники, работающие от батарейки и аккумуляторов. Они имеют небольшую мощность (обычно 15 Вт) и предназначены для пайки мелких электронных компонентов.
Пока статья подходит к концу. Получались довольно большой, много подробностей узнали по данной теме, но также много не успели рассказать, интересного много, сразу не расскажешь. Потом будет продолжение в виде углубленного изучения определённого вопроса.
yznavai.ru
Паяльник своими руками является неплохой альтернативой дорогим магазинным аналогам. Правильно сконструированное изделие справится со всеми задачами, с которыми вы можете столкнуться в повседневной жизнедеятельности (восстановление отлетевших контактов, пайка проводов при их удлинении и т.п.).
Рисунок 1. Схема устройства простого паяльника.
На современном рынке электроинструментов паяльники представлены в широком ассортименте. Это могут быть как отечественные, так и зарубежные модели, которые отличаются между собой не только стоимостью, но также конструкцией и принципом действия. Поэтому, перед тем как приступить к сборке самодельного паяльника, необходимо рассмотреть классификацию данного инструмента и разобраться в принципе функционирования каждого вида. Обладая этими знаниями, вы сможете смастерить функциональное изделие, с которым будет работать не только удобно, но и безопасно.
Паяльник — это электрический инструмент, который предназначен для соединения между собой металлических элементов с помощью припоя. В качестве припоя используются металлические сплавы на основе меди, олова, свинца и т.п.
Самый простой паяльник состоит из следующих элементов (рис. 1):
Рисунок 2. Схема мини-паяльника с нихромовым нагревательным элементом.
Стержень и жало изготавливаются из красной меди. Это обусловлено тем, что данный материал имеет высокую теплопроводность, благодаря чему тепло от нагревательного элемента (нихромной спиралевидной нити) беспрепятственно передается припою, в результате и осуществляется пайка металла.
Кроме инструмента со спиралевидным нагревательным элементом (ЭПСН), также существуют и другие виды паяльников, среди которых наиболее популярными являются:
Рисунок 3. Импульсный паяльник предназначен для выполнения несложных работ по сборке электронных микросхем.
Чтобы сделать самому миниатюрный паяльник для работы с микросхемами, необходимо приготовить следующие инструменты и материалы:
Схема мини-паяльника с нихромовым нагревательным элементом показана на рис. 2. Первым делом из медной проволоки изготавливается жало. Для этого один ее конец с помощью напильника затачивается под удобную форму (двусторонний угол или конус). Обработанные участки следует залудить.
Затем из силикатного клея и талька замешивается изолирующий раствор. Далее жало будущего паяльника необходимо обернуть медной фольгой. При этом рабочая часть изделия (около 1,0-1,5 см) должна быть открытой. Поверх фольги укладывается тонкий слой приготовленной электроизоляционной смеси и высушивается при температуре 120-140°C.
Рисунок 4. Электрическая схема самодельного импульсного паяльника.
На следующем этапе производится наматывание нихромовой проволоки. Витки должны быть плотными, длина прямого конца должна составлять около 3 см, а заворотного — 6 см. Затем изделие еще раз покрывается приготовленным раствором и высушивается при той же температуре.
Длинный конец проволоки укладывается на металлическую трубку так, чтобы между ним и меньшим концом было максимальное расстояние. После этого осуществляется последняя обработка изолирующим раствором и его запекание. Нагревательный элемент с жалом готов.
На последнем этапе сквозь рукоятку протягивается питающий шнур, к которому подсоединяются торчащие концы нихромовой проволоки. Оголенные места следует заизолировать оставшейся смесью. Для защиты рук от ожогов на нагревательный элемент можно надеть специальный кожух из термоизоляционного материала. Подключать такой самодельный паяльник нужно через понижающий трансформатор или источник питания, выдающий 12 В.
Импульсный паяльник своими руками предназначен для выполнения несложных работ по сборке электронных микросхем. Рабочий элемент в нем, как и в первом примере, представляет собой медную проволоку, нагрев которой осуществляется с помощью импульсного электрического тока небольшого напряжения (рис. 3).
Перед тем как сделать паяльник импульсного типа, нужно приготовить такие инструменты и материалы:
Схема работы паяльником.
Электрическая схема самодельного импульсного паяльника представлена на рис. 4. Основным элементом данного инструмента является электронный трансформатор, за основу которого можно взять импульсный блок питания мощностью 40 Вт, установленный в лампах дневного света. В этом блоке следует удалить вторичную обмотку трансформатора, а затем с помощью медной проволоки толщиной 1,0 мм сделать 1-2 витка вокруг сердечника.
После этого измененный трансформатор монтируется в заранее подготовленный корпус в виде пистолета. В качестве курка будет выступать кнопка включения/выключения инструмента. На месте ствола устанавливается диэлектрическая стойка с медным жалом на конце в виде петли. Рабочий элемент подсоединяется к концам намотанной на трансформатор проволоки. При нажатии на пусковую кнопку происходит замыкание цепи, в результате чего медное жало нагревается. Для визуализации работы паяльника его дополнительно можно оборудовать светодиодом.
При пайке не рекомендуется подолгу нажимать на кнопку, так как это может привести к перегреву трансформатора и поломке инструмента.
В изготовлении паяльника своими руками нет ничего сложного, поэтому с предстоящими работами сможет справиться каждый. Не забывайте, что данное изделие работает от электричества. Поэтому в процессе работ соблюдайте все правила электробезопасности, что убережет вас от травмирования, а инструмент — от преждевременного выхода из строя.
Оцените статью:
2 голосов, в среднем: 5,00 из 5 Загрузка...masterinstrumenta.ru